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ARTICLE INFO ABSTRACT

Keywords: The urban heat island (UHI) effect influenced by 3D urban morphology exacerbates urban thermal en-
Urban heat island (UHI) vironments and presents significant challenges to sustainable urban development. While previous studies
3D u.rban morphology have emphasized the impact of urban morphology indicators on UHI, fine-scale variations and the intricate
xgﬁ;‘“"dal data relationships between these factors remain underexplored. This study employs LiDAR and geotagged data
LightGBM to obtain nine morphological indicators using the deep learning based semantic segmentation methods. An

explainable machine learning framework, specifically an ensemble learning model based on Shapley Additive
exPlanations (SHAP), is applied to assess the impact of these indicators and their complex interactions on the
thermal environment. Using Austin, Texas as a case study, we present a 3D perspective on the morphology-UHI
relationship. The results reveal that urban indicators have more significant impact on UHI, with the sky view
factor and impervious surface ratio contributing the most. The influence of urban morphological features on
UHI exhibits spatial heterogeneity and boundary effects. For example, building volume initially exacerbates
UHI, but once it exceeds a certain threshold, it starts to mitigate the heat island effect. Additionally, the
interaction between small buildings and dense road networks intensifies UHI, whereas high-rise buildings can
alleviate the effects of extensive urbanization on UHI. These findings offer valuable insights into the driving
mechanisms of 2D and 3D urban morphology on UHI and provide guidance for optimizing urban design to
reduce the urban heat island effect.

Interpretable machine learning

1. Introduction drivers [6-9]. It is crucial to elucidate the driving mechanisms of urban

morphology on UHI formation, so as to provide a robust foundation for

Urban development has resulted in substantial changes in spatial the development and implementation of effective urban policies and
configurations and morphological patterns of cities, significantly affect- planning strategies.

ing the urban environment and the potential for sustainable ecological With the development of remote sensing and geo-spatial technology,

remote sensing images have been widely used to develop indicators
describing urban morphology for UHI study [10-14]. A series of mor-
phological indicators are calculated from remote sensing images, such
as land cover [15,16], landscape patterns [17,18], and built environ-
ment [19,20], to construct analysis and prediction models with the

systems [1-4]. Driven by urbanization, the phenomenon where urban
areas exhibit higher temperatures than their surrounding suburban and
rural regions is known as the Urban Heat Island (UHI) [5]. Given
the significant implications of UHI on local climate patterns, there
has been increasing attention on understanding their mechanisms and
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retrieved land surface temperature (LST). Despite providing a 2D per-
spective of urban morphology, remote sensing images have limitations
in capturing the spatial heterogeneity of 3D urban structures.

Currently, most cities tend to grow vertically during expansion.
Understanding the vertical spatial characteristics of cities is beneficial
for analyzing the thermal effects of complex built environments. 3D
morphology reflects the absorption of thermal energy and its impact
on microclimates [21]. With the open availability of various spatial
observations and geospatial big data, an increasing number of 3D
indicators have been developed as new sources for extracting the 3D
built environment [22]. Sky view factor (SVF) [23,24] and green view
factor (GVF) [25] from street view images are considered for UHI anal-
ysis. More crowdsourced geoinformation data are used to generate the
height, volume, and density of buildings, providing insights into cities
from a volumetric spatial scale [26,27]. Some studies have extracted
urban morphology from both 2D and 3D perspectives to illustrate the
relationship between urban morphology and LST [4,28,29]. Despite
significant progress in 3D urban morphology, there has been less effort
in fine-scale local studies and spatial scale accuracy. A fine-grained
understanding of urban buildings and landscape patterns is able to
still strengthen the understanding and analysis of urban heat islands.
Meanwhile, the impact of 3D morphology has varying impact effects on
specific cities, the evaluation with more detailed 3D information need
to be explored.

Furthermore, urban systems exhibit considerable complexity, ne-
cessitating effective models to accurately measure the relationships
between various morphological factors and UHI effects. Spatial regres-
sion [30] and geographically weighted regression (GWR) [4] have been
employed to address the spatial heterogeneity among factors influenc-
ing UHL However, these models face limitations due to their inability
to manage multicollinearity, which impedes the determination of cor-
relations and interactions between factors. To address these challenges,
machine learning approaches, such as boosted regression trees [31,32],
random forest [33], and XGBoost [29], have been utilized to assess the
significance of morphological indicators for UHI. Nonetheless, the black
box nature of these machine learning methods often hampers their
interpretability, thereby complicating the elucidation of morphological
contributions to UHIL Recently, Shapley Additive exPlanations (SHAP)
method has attracted widespread attention as an explainable method
for machine learning. Inspired by this, we are keen to use the SHAP
method to explore the UHI effects of urban morphology.

To this end, we propose a new framework to reveal the divergent
mechanisms behind UHI from an urban 3D perspective by incorporating
multi-modal geospatial data. Firstly, we utilize our previous works to
extract urban entities from point clouds and building footprint from
remote sensing images. Moreover, we use geo-tagged data to obtain
vector polygons for calibration. Secondly, the extracted urban entities
are employed to estimate the urban 2D & 3D morphology indicators
within spatial grids. Finally, we use LightGBM model and SHAP method
to assess the impact of these indicators and explain their contributions
to UHI. Taking central area in Austin, Texas as the study case, the con-
tributions of primary urban morphology indicators affecting UHI are
extensively examined and assessed, to further highlight the distinguish
the underlying mechanisms of UHI effects. The main contributions of
our work are as follows:

By integrating multi-modal gao-spatial data, we establish a multi-
dimensional measurement system of urban morphology;

We provide fine-grained urban understanding from point clouds
to create detailed urban spatial values;

We explore how 2D & 3D urban morphology impact UHI effect
from an urban spatial perspective;

The results of our study shed light the underlying mechanisms of
UHI effect and provide evidence and strategies for UHI mitigation.
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2. Study area and data
2.1. Study area

Austin (30°17'N, 98°11’W) is located in central Texas on the eastern
edge of the American Southwest? (Fig. 1). It is the capital of Texas
and one of the four largest cities in Texas and the 11th largest city
in the United States, with a population of over 1 million residents,
covering approximately 790 km?2.? From 2020 to 2023, Austin’s urban
population and metropolitan area have experienced sustained growth.

Austin is situated within a hilly terrain, with elevations ranging
from 80 to 405 m. The Colorado River traverses the downtown area,
contributing to the unique topographical features. The hilly topography
creates microclimates within the city, affecting temperature distribu-
tion and heat retention. The Colorado River serves as a natural cooling
mechanism, providing a comparative baseline for understanding the
cooling effects of water bodies.

As the capital of Texas, government entities are concentrated in the
downtown area, while high-tech companies and factories are dispersed
around the city. This makes Austin’s architectural style a blend of
metropolitan density and rural sprawl. The city is characterized by
a mix of high-rise buildings and suburban neighborhoods, creating a
diverse urban landscape. The city is dotted with significant vegetation
areas, such as parks and green spaces, which help mitigate the surface
temperature increases associated with urban expansion.

The interaction between the geographical features and the build-
ing environment offers insights into mitigating UHI effects through
strategic urban planning. This unique blend of urban and natural
features makes it an intriguing case study for examining the spatial
heterogeneity of LST within 3D urban perspective. Austin has become
an excellent location for studying 3D urban structure and urban thermal
environments.

2.2. Data collection

The point clouds data is derived from geospatial data products
provided by the Texas Geographic Information Office,* as part of the
Texas Strategic Mapping Program. LiDAR data acquisition is conducted
between Jan. 26, 2021, and Mar. 7, 2021, using NAD83 and NAVDS88
as horizontal and vertical datum, respectively, with a point density of
12 points per square meter. The data format adheres to LAS 1.4 Format
6,° encompassing Intensity, Return Number, Scanner Channel, Classifi-
cation, and various other attributes. The data is annotated following the
ASPRS ALS classification standard, as detailed in Table 1. The second
column lists the ASPRS classification categories, and fourth column
reflects the actual classes. We manually adjusted the classification to
account for features such as rail and road surface as impervious surfaces
as well as extract man-made structures from class 0 in CloudCompare®
software. Finally, we use distinct colors to label the corresponding
categories for visualizing the results. The remote sensing imagery and
geo-tagged data are sourced from Google Earth’ and OpenStreetMap.®

Land surface temperature (LST) data for the study area is obtained
from the Sentinel-3 satellites, including data from both Sentinel-3 A
and Sentinel-3B. With an orbital period of approximately one day,
the combination of these two satellites provides high-frequency, in-
scope data concurrent with the point clouds acquisition period. The
Sea and Land Surface Temperature Radiometer (SLSTR) onboard these
satellites is equipped with multiple thermal infrared (TIR) channels

https://www.austintexas.gov/resident/about-city-austin
https://demographics-austin.hub.arcgis.com/
https://geographic.texas.gov
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://cloudcompare.org/

https://earth.google.com/web/

https://www.openstreetmap.org/
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Fig. 1. Location of study area and its land surface temperature pattern. Note that the outline of Austin represents the boundary of the point cloud collection area.
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Fig. 2. Framework of investigating the impact of urban morphology on UHI using multi-modal geo-spatial data.

to measure the Earth’s surface temperature [34], while visible and
near-infrared channels are used to assist in temperature calculations
and to provide additional environmental information. The collected
information undergoes radiative and atmospheric corrections to ensure
high-quality temperature measurements. We filter the data covering
the study area through the Copernicus Open Access Hub,’ focusing on
the period from Jan. 26 to Mar. 4, and exclude any data with large
areas of missing values. The final selection includes eight Level-2 data
sheets, each with an approximate resolution of 1 km. The average LST

9 https://www.copernicus.eu/

for overlapping areas was calculated to produce the final land surface
temperature.

3. Method

To reveal the impact mechanisms and effects of 3D urban mor-
phology on the UHI, we propose a new workflow as illustrated in
Fig. 2. Firstly, the proposed deep learning-based semantic segmentation
method is utilized to extract major urban entities from large-scale point
clouds. Moreover, we integrate remote sensing imagery and geotagged
data to jointly extract 2D and 3D urban morphological features. Sec-
ondly, multi-temporal LST data are employed to calculate the UHI
index. Next, a LightGBM model is constructed with the UHI index as


https://www.copernicus.eu/
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Fig. 3. Examples of point clouds with attributes and corresponding semantic segmentation.

Table 1

Point clouds annotation classification standards and adjustments in our method.
Value Class Select Actual class Color
0 Created, Never Classified v Impervious Surface [ ]
1 Unclassified - -
2 Ground v Ground [ ]
3 Low Vegetation v Vegetation
4 Medium Vegetation v Vegetation
5 High Vegetation v Tree [ ]
6 Building v Building [ ]
7 Low Point (Noise) - -
9 Water v Water
10 Rail v Impervious Surface [ ]
11 Road Surface v Impervious Surface [ ]
14 Culverts v Impervious Surface [ )
17 Bridge Decks v Impervious Surface [ ]
18-255 - -

the dependent variable and various urban morphology indicators as
independent variables. Finally, the SHAP method is used to interpret
the contributions and significance of the these indicators, shedding
light on their differences and correlations.

3.1. Urban heat island index

UHI effect refers to the extent to which temperatures in urban
areas are higher than those in surrounding rural or natural areas [35].
UHI can be measured using LST data obtained from remote sensing
products. The formula of UHI index [36] is as follows:

T.-T

i

UHI =

(€8]

c

where T; and T represent the LST value of the current pixel and
the mean temperature value of the study area, respectively. o is the
standard deviation of the study area. This approach helps to mitigate
the impact of climatic conditions on the UHI, providing a more intuitive
and standardized measurement of UHI intensity. The calculations are
performed using the ArcMap Raster Calculator.'®

3.2. 2D & 3D urban morphology indicators
We extract urban entities from remote sensing images, point clouds,

and geotagged data to obtain 2D and 3D urban morphological indica-
tors. These indicators focus on four key aspects: building, vegetation,

10 https://www.esri.com/zh-cn/arcgis/products/arcgisdesktop/resources

water environment, and urban facilities (as shown in Table 2), with the
aim of assessing their impact mechanisms on the UHI effect.

To more effectively extract urban 2D and 3D morphology, we em-
ploy multi-modal geospatial data to identify and analyze urban entities.
On one hand, point clouds represent the 3D spatial morphology of
the city, facilitating the extraction of semantic entities that provide
insights into the structural characteristics and distribution of various
urban features. On the other hand, geotagged data and remote sensing
imagery together enhance the comprehension of 2D features and their
spatial distribution, offering a more comprehensive and macro-level
perspective on urban environments.

We utilize the proposed ASGFormer [37] to extract urban objects
from large-scale urban point clouds. ASGFormer takes point clouds as
input and performs semantic segmentation on the point clouds using a
Graph Transformer network. Thus, the 3D spatial structure is obtained
to characterize 3D features and spatial morphology among different
urban semantic categories. Specifically, The input data consists of point
cloud coordinates (XY Z) and intensity, which are voxelized using a
voxel size of 0.5 m. In total, we obtain 1245 point cloud blocks, among
which 245 are randomly selected for training to predict the remaining
1000 unlabeled samples. During training, we use CrossEntropy loss
with label smoothing, the AdamW optimizer, and a cosine learning
rate decay. The initial learning rate is set to 0.01, and the batch size
is 16. The model is trained on an NVIDIA A100 GPU, and the best-
performing model on the validation set is used for inference. Finally,
semantic segmentation results are mapped back to the original point
clouds for subsequent analysis of urban 3D morphological indicators.

The semantic segmentation examples are shown in Fig. 3. As a
typical area of Austin, the region near the University of Texas features
diverse building types and dense green coverage. We extract buildings,
low / medium/high vegetation, impervious surfaces, and some water
bodies in the city to calculate subsequent urban 3D morphology in-
dicators. Meanwhile, remote sensing imagery is leveraged to extract
building footprints and road networks. The proposed method [14] is
capable of adapting to roads and buildings of various sizes, shapes,
and densities. Finally, urban entity vectors are derived from geotagged
data, such as OSM. These methods information enable the estimation of
more accurate, comprehensive, and multidimensional 2D and 3D urban
morphology indicators.

Based on the point clouds data format, we divide the remote sensing
images, vector maps, and point clouds into identical blocks. Each block
is then further divided into a 25 x 25 grid, within which morphological
indicators are calculated. First, ground points are interpolated into a
DEM for each grid, and the height difference is calculated by subtract-
ing the DEM from the feature points. Next, polygons are extracted from
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Table 2
2D and 3D urban morphology indicators in four key aspects, where b, g, , w, is, r denote the building, ground, tree, water, impervious surface, and road, respectively.
Aspects Name Type Abbr. Description Calculation
Building Total Area 2D BTA Total area of building AL
Average Building Height 3D ABH Average height of building i Y H,
Building Average Building Volume 3D ABV Average volume of building % vy
Building Ratio 3D BR Percentage building footprint points to all ground points Numy,/Num,
Sky View Factor 3D SVF Percentage of sky space to total space V! Viotar
Vegetation Average Tree Height 3D ATH Average height of tree % Yo H
Water Water Area 3D WA Total area of water Yo AL
Facilit Density of Road 2D DR Ratio of road length to area L./ A
y Impervious Surfaces Ratio 3D ISR Percentage impervious surface points to all ground points Num;;/Num,

the building footprints and road networks, and manually adjusted to
align with vectors from OSM. Finally, the elevation and polygons are
used to calculate the morphological indicators.

Previous studies [4,29,38,39] have shown that the UHI effect is
significantly influenced by the 2D and 3D morphology of buildings.
To provide a more comprehensive understanding, we incorporate a set
of urban morphological indicators categorized into four key aspects:
buildings, vegetation, water, and facilities. These indicators jointly
describe both horizontal and vertical spatial features and facilitate an
in-depth analysis of their relationship with the UHI effect from a 3D
spatial perspective. Moreover, we utilize a large language model (LLM)
for a preliminary interpretation of these indicators [40], which supports
the subsequent quantitative analysis.

3.3. LightGBM regression model

LightGBM is a highly efficient algorithm based on Gradient Boosting
Decision Trees (GBDT), specifically designed to handle high-
dimensional features and large-scale datasets [41,42]. It operates by
iteratively building an ensemble of weak predictive models, such as
decision trees, and combining their predictions to create a robust final
model. Unlike traditional GBDT implementations, LightGBM uses a leaf-
wise growth strategy with depth constraints, the algorithm splits only
the leaf node with the highest information gain at each iteration. This
approach reduces the number of splits, optimizing both memory usage
and computational efficiency. Additionally, it restricts the depth of
decision trees to prevent overfitting. Consequently, LightGBM offers
faster training speeds, lower memory consumption, higher accuracy,
and improved scalability when working with large datasets [41].

In this study, LightGBM is executed with UHI as the dependent
variable, and nine urban morphology as independent variables. Thus,
morphological indicators are used as input features for the LightGBM
model to predict UHI. The dataset from the study area is split into
training and validation sets with a 7:3 ratio. The grid search is em-
ployed to optimize the model parameters. This modeling process is
implemented using Python 3.7.16'! with the sklearn'? and lightgbm'®
libraries. Subsequently, the coefficient of determination (R?) and root
mean square error (RMSE) are applied to measure the model accuracy.

3.4. SHAP method

To address the black box issue commonly associated with machine
learning models, we employ the SHAP method [43] to interpret the
prediction process of the LightGBM model [44]. SHAP is a local inter-
pretation method based on cooperative game theory’s Shapley values .
It constructs an additive explanation model to quantify the contribution

11 https://www.python.org/
12 https://scikit-learn.org/stable/index.html
13 https://lightgbm.readthedocs.io/en/latest/Python-Intro.html

of each feature to the model’s output for each individual sample. The
formula for SHAP is as follows:
N
UHI = UHI,,, + 2 shap; (@3]
i=1
where U HI,,,, represents the baseline value, which is the mean UHI
value across the study area. N and shap; denote the number of features
and the contribution of feature i of all sample points to the predicted
UHI, respectively. The relative contribution weight W (i) of feature i to
UHI is calculated as follow:

W) = __Ishap,| 3)

>N, Ishap|
where |shap;| denotes the mean |SHAP| value for feature i.

In UHI research, urban morphological features do not function in
isolation. The SHAP method also enables the calculation of SHAP_
interaction_values, which provide insights into the interaction effects
between pairs of features. For any given feature, its SHAP value is the
sum of its main effect and its interaction effects with all other features.
A more detailed explanation can be found in [43].

4. Results
4.1. Spatial distribution of UHI and urban morphology indicators

Before conducting the LightGBM modeling, the selected nine 2D &
3D urban morphology indicators and calculated UHI index are statisti-
cally evaluated in terms of distributions and intensity, as shown in Fig.
4(a). Both ABV and ABH did not exhibit distribution characteristics,
whereas BTA, BR, ISR, and DR display similar spatial distribution
characteristics. Moreover, water bodies and vegetation also exhibit
relatively distinct distribution patterns.

In the western part of the study area, building coverage is highly
concentrated, as evidenced by the high BTA, BR, and DR. This is
consistent with the population distribution in the Austin from U.S.
Census.'* Since impervious surfaces are mainly concentrated in roads
and urban facilities, their spatial distribution is similar to that of roads
and buildings. BR and SVF exhibit an inverse relationship, meaning
that in areas with high building density, urban morphology tends to be
compact, thereby reducing the SVF. Due to the Colorado River running
through Austin, the distribution of major water bodies aligns with the
river basin, showing a normal distribution. Adequate water systems
help mitigate the UHI effect, with features such as streams playing a
cooling role, while plants growing along the banks provide shade and
absorb moisture. Austin is a city with dense vegetation, and most areas
have high vegetation coverage. The southwestern part of the study area
is hilly, and the presence of a Wildflower Center contributes to the
higher vegetation rate in this region.

The average temperature of Austin is around 20 °C, which matches
the value we calculated. The calculated UHI values are shown in Fig.

14 https://demographics-austin.hub.arcgis.com
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4(b). For a semi-arid region in the Austin, heat stress is a health issue
that must be addressed. Our results shows that UHI effect has a high
correlation with urban morphology. The spatial characteristics of the
UHI are shown in Fig. 4(c). The northern and southern parts of the
study area are high-value UHI clusters, while the central-eastern part
is a low-value cluster. Areas with dense buildings and road networks
exhibit significantly higher temperatures. On one hand, high urban den-
sity promotes more concentrated activities such as population, industry,
and transportation, leading to an increase in total carbon emissions.
On the other hand, the rapid development of Austin has resulted in
significant traffic congestion, making transportation the second-largest
source of carbon emissions in the city. Meanwhile, river basins and
regions with high vegetation coverage play a clear cooling role. The
evaporation of moisture and the healthy growth of vegetation have
become the city’s natural air conditioning.

4.2. Response of UHI to urban morphological indicators

A LightGBM model is constructed to fit the UHI effect using urban
morphological indicators (R? = 0.62, RMSE = 0.45), and SHAP method
is subsequently applied to interpret the internal processes of model.
By aggregating SHAP values for each indicator and calculating Pearson
correlation coefficients, we assess the relative importance and direction
of influence of urban morphology on UHI. We find that 3D urban
morphology factors play a more significant role in influencing UHI
effect, with SVF, ISR, and ABV having the most substantial impact,

as shown in Fig. 5. Their relative contribution weights are 22.7%,
18.2%, 14.2%, respectively. Specifically, SVF (r = 0.10) and ISR (r =
0.35) are positively correlated with UHI, while building volume (r =
—0.14) and building height (r = —0.37) show a negative correlation in
Fig. 5. The feature importance analysis indicates that the 3D building
metrics (ABH, ABV, BR, SVF) ranks among the top five in terms of their
contribution.

The dependencies between each feature value and its corresponding
SHAP value for all samples are plotted to explore how these features
influence UHI, as shown in Fig. 6. The dashed lines differentiate the
positive and negative effects of urban morphological features on UHI
Threshold effects are observed in the influence of these features on
UHL. For instance, when the building volume is below approximately
100,000, it has a positive effect on UHI, intensifying the heat island
effect. However, when building volume exceeds threshold, its effect
shifts to mitigating UHI. Similarly, the thresholds for SVF, ISR, and
BR are identified at 0.7, 0.1, and 0.1, respectively. Beyond these
thresholds, their influence transitions from mitigating to promoting
UHI. The impact of road density exhibits an inverted U-shape, where
both extremely high and low level of road density help alleviate UHIL

Besides the statistic and importance of urban morphology, it is
imperative to investigate the spatial distribution of the positive and
negative impact of different urban morphology indicators on the UHI
effect. The spatial distribution of SHAP values provides localized in-
sights into the impact of urban morphological metrics on UHI, as shown
in Fig. 7. The color gradient from red to blue represents the transition
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Fig. 7. Spatial distribution of SHAP values for urban morphology features.

from positive to negative impacts, where a larger extent of red indicates
a stronger positive contribution to UHI, and vice versa. The spatial
heterogeneity observed across the study area highlights the variability
in these effects.

SVF exhibits significant spatial clustering and has the strongest
influence among all metrics, with 45.1% of the area showing |SHAP| >
0.15. Notably, 9.4% of the area has SHAP values ranging from 0.3
to 0.65, primarily concentrated in the southern part of the region,
indicating that SVF strongly amplifies UHI intensity there. In contrast,
ISR displays an opposite spatial pattern to SVF and also has a relatively

strong impact, with 39.7% of the area showing |[SHAP| > 0.15. The im-
pact of DR on UHI is slightly more negative than positive. Specifically,
49.6% of the area has SHAP values between 0 and 0.15, while 39.8%
falls within the range of —0.15 < SHAP < 0, and 10.5% of the area has
SHAP values below —0.15. The strongest negative effects are mainly
concentrated in the southeastern part of the region, as well as in a small
portion of the eastern area.

It demonstrate different spatial patterns can also be observed within
the same category. Although SVF and ISR are widely used for mea-
suring the compactness of the city, it is hard to tell which is a better
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Fig. 8. The summary of the interactions between a single feature and all other features except itself.

indicator. Thus, we need to combine these indicators to obtain a better
understanding about how urban morphology affect the UHIL.

4.3. Influence of feature interactions on UHI

SHAP interaction values provide insights into how interactions be-
tween urban morphological features impact UHI. Fig. 8 summarizes the
interactions between each feature and all other features. It is found
that the interactions between urban morphology features can either
exacerbate or alleviate UHI, depending on the specific conditions.
Positive and negative interaction effects of each feature can partially
offset each other. From a global perspective, building volume tends to
mitigate UHI when interacting with other features, while SVF and DR
tend to intensify UHI through their interactions.

Examining the interactions between ABV, ABH, and other features,
we observe that when the ABV is below 100,000, interactions with
DR tend to exacerbate UHI. However, when the ABV exceeds 100,000,
interactions with DR help mitigate UHI. Similarly, when ABV is low,
low SVF and tall trees helps to mitigate UHI. In contrast, with higher
building volume, dense vegetation can actually intensify UHI (Fig. 9(a-
c)). Additionally, higher BR, DR, and ISR signify a more developed
urban environment. In such conditions, interactions with tall buildings
can contribute to alleviating UHI (Fig. 9(d-f)).

5. Discussion
5.1. Impact of urban morphological features on UHI

This study utilizes the LightGBM-SHAP framework to examine the
impact of urban morphological features on UHI effects. Our findings
indicate that, among various urban morphological factors, 3D building
metrics have a more significant impact on UHI compared to other
factors. This conclusion aligns with prior research conducted in differ-
ent urban contexts [45]. Additionally, the analysis of the relationship
between SHAP values and urban morphological features reveals both
nonlinear and threshold effects of these features on UHI.

Our results build upon the previously established positive correla-
tion between SVF and UHI [23,46]. Specifically, we find that when SVF
is below 0.7, it mitigates UHI by enhancing street ventilation [47].
However, when SVF exceeds this threshold, the increased openness
leads to greater surface exposure to solar radiation, resulting in higher
temperatures [48]. It is important to recognize that the impact of

SVF on UHI can vary significantly across different spatial scales. This
variation may be influenced by factors such as the study area, block
layout, and building density. For instance, [49] reported a negative
correlation between LST and SVF at the block scale (i.e., irregular grid).
These findings highlight the importance of considering scale effects in
future research.

Similarly, the influence of ISR on UHI also exhibits a threshold
effect. When ISR is below 0.1, the evaporation effect on urban surfaces
significantly reduces surface temperatures. However, as ISR increases,
the cooling effect of evaporation diminishes, and impervious surfaces
begin to absorb and store more heat, thereby exacerbating UHI. This
occurs because impervious surfaces alter the latent and sensible heat
fluxes within the urban boundary layer and surface layer, with in-
creased impervious surfaces disrupting natural heat exchange [50,
511.

Building volume also exhibits a distinct threshold effect on UHI.
When building volume is less than 100,000, UHI is intensified due
to larger exposed areas and localized heat accumulation. However,
once the building volume exceeds this threshold, the combined effects
of shading from compact, tall buildings [31] and the canyon effect
created by ventilation corridors [52] help to mitigate UHI. Additionally,
road density follows an inverted ‘U’-shape in its impact. While higher
density facilitates ventilation and heat exchange, thereby reducing
UHI. Excessive road density leads to increased heat buildup between
buildings and elevated traffic heat emissions, which in turn exacerbate
UHI effects [53]. At the same time, in high-tech industrial areas, the
increased construction of light rail has significantly reduced urban
transportation carbon emissions, compared to automobile traffic.

5.2. Unraveling complex interactions of urban morphological features on
UHI effects

Firstly, the intricate interplay between urban morphological fea-
tures and their impact on UHI effects is analyzed using SHAP interac-
tion values. When building volume is relatively low, its interaction with
a dense road network exacerbates UHI, as the limited air circulation
caused by dense roads can lead to heat accumulation. However, as
building volume increases, the ventilation effect of the road network
becomes more pronounced, helping to mitigate UHI. This phenomenon
can be attributed to the urban canyon effect, where dense arrangement
of buildings and roads may create effective ventilation corridors under
certain conditions, thereby reducing local temperatures [54].
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Fig. 9. SHAP interaction plots for urban morphology features.

Secondly, the interaction between building volume and vegetation
cover also shows significant effects. When building volume is small and
SVF is low, dense tree coverage can effectively blocks solar radiation,
thereby alleviating UHI effects [55]. Conversely, as building volume
increases, reduced sky visibility can contribute to heat retention at the
surface, exacerbating UHI [56].

Moreover, the interaction between building height and road density
exhibits complex effects. Research indicates that increased building
height reduces local heat accumulation by casting shadows and en-
hancing air circulation, especially in high-density areas where this
cooling effect on UHI is more pronounced. Therefore, in regions with
high building and road densities, tall buildings often help mitigate
UHI. However, when road density becomes excessively high, heat from
traffic emissions and road surfaces accumulates locally, counteracting
the shading effect of buildings and leading to further intensification of
UHI [54,57,58].

Finally, a high proportion of impervious surfaces, combined with
a dense road network and tall buildings, can help mitigate UHI by
enhancing wind circulation and reducing solar radiation exposure [59].
These complex interactions highlight the dynamic and multi-
dimensional nature of UHI mechanisms across various urban morphol-
ogy combinations. They emphasize the importance of considering the
combined effects of urban morphology in city planning and design to
more effectively address and mitigate UHI effect.

5.3. Limitations

There are still some limitations in this study. Firstly, we focus on
cold months (Jan. to Mar.), hot and moderate months should be further
investigated. A single-season temperature may lead to a biased analysis
of the impact mechanism. In future work, we plan to incorporate multi-
seasonal land surface temperature data to investigate the temporal
dynamics of UHI patterns across different climate regimes.

Secondly, the UHI effect at the block scale, combined with building
functions, needs further exploration to provide insights into urban
functional zones.

Next, proportions of different buildings, such as low-rise, mid-rise,
and high-rise buildings, are worth further discussion. The different
temperature effects in the vertical direction are meaningful for urban
studies.

Finally, the distance or proximity of other infrastructures to each
block could be regarded as a key variable, which can be worth further
investigating to understand the cooling effects of infrastructures spilling
over the block boundary.

6. Conclusion

This paper integrates 2D & 3D urban morphology indicators and
utilizes LightGBM-SHAP framework to investigate the impacts and
driving mechanisms related to the UHI effect by using multi-modal
geo-spatial data. Firstly, we employ deep learning based semantic
segmentation methods to extract urban entities from LiDAR and remote
sensing imagery, and also obtain vector polygons from geo-tagged data.
Next, we estimate urban 2D & 3D morphological indicators and select
nine variables from the candidate indicators for subsequent modeling
based on their correlation coefficients. Lastly, LightGBM-SHAP method
is used to analysis the impact of those indicators on UHI and explain
their contributions. We provide precise spatial measurements, detailed
and high-confidence urban morphology, along with a comprehensive
analysis of impact mechanisms and driving factors.

Taking Austin, Texas as the study case, the main conclusions are as
follows:

+ Urban indicators have a significant impact on UHI effect. Urban
morphology features such as SVF and ISR contribute to increasing
UHI, while building volume and height help reduce it;

Urban morphological features exhibit threshold or boundary ef-
fects on UHI, where their influence shifts between intensifying
and mitigating UHI beyond certain critical points. For instance,
building volume may initially exacerbate UHI, but once it exceeds
a certain threshold, it begins to alleviate the heat island effect.
Similarly, indicators like SVF and ISR also show threshold effects.
Spatially, these effects vary across different regions, with densely
built areas experiencing stronger UHI effects, while regions with
more vegetation or water bodies show cooling effects, empha-
sizing the regional variability in how urban morphology impacts
UHI,

Interactions between urban morphological features can either
intensify or mitigate UHI depending on their combinations. For
example, the interaction between lower building volume and road
density typically exacerbates UHI, while higher building volume
tends to alleviate it. Additionally, interactions between building
height and other features, such as higher ISR representing ad-
vanced urban development, can also help mitigate UHI in certain
cases.

The above findings indicate that integrating urban morphology
extracted from multi-modal geo-spatial data with the LightGBM-SHAP
framework is an effective and practical workflow for assessing UHI
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effects, providing valuable insights to inform decision-making in urban
planning and facilitate sustainable urban development.

Despite the achievement in our study, there is still room to im-
prove the understanding of the relationship between other factors of
urbanization and UHI, as well as in more rational spatial delineation.
In the future, we will explore more comprehensive spatiotemporal
variation indicators based on socio-economic metrics to better elucidate
the underlying mechanisms of UHI.
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