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 A B S T R A C T

The urban heat island (UHI) effect influenced by 3D urban morphology exacerbates urban thermal en-
vironments and presents significant challenges to sustainable urban development. While previous studies 
have emphasized the impact of urban morphology indicators on UHI, fine-scale variations and the intricate 
relationships between these factors remain underexplored. This study employs LiDAR and geotagged data 
to obtain nine morphological indicators using the deep learning based semantic segmentation methods. An 
explainable machine learning framework, specifically an ensemble learning model based on Shapley Additive 
exPlanations (SHAP), is applied to assess the impact of these indicators and their complex interactions on the 
thermal environment. Using Austin, Texas as a case study, we present a 3D perspective on the morphology-UHI 
relationship. The results reveal that urban indicators have more significant impact on UHI, with the sky view 
factor and impervious surface ratio contributing the most. The influence of urban morphological features on 
UHI exhibits spatial heterogeneity and boundary effects. For example, building volume initially exacerbates 
UHI, but once it exceeds a certain threshold, it starts to mitigate the heat island effect. Additionally, the 
interaction between small buildings and dense road networks intensifies UHI, whereas high-rise buildings can 
alleviate the effects of extensive urbanization on UHI. These findings offer valuable insights into the driving 
mechanisms of 2D and 3D urban morphology on UHI and provide guidance for optimizing urban design to 
reduce the urban heat island effect.
1. Introduction

Urban development has resulted in substantial changes in spatial 
configurations and morphological patterns of cities, significantly affect-
ing the urban environment and the potential for sustainable ecological 
systems [1–4]. Driven by urbanization, the phenomenon where urban 
areas exhibit higher temperatures than their surrounding suburban and 
rural regions is known as the Urban Heat Island (UHI) [5]. Given 
the significant implications of UHI on local climate patterns, there 
has been increasing attention on understanding their mechanisms and 
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drivers [6–9]. It is crucial to elucidate the driving mechanisms of urban 
morphology on UHI formation, so as to provide a robust foundation for 
the development and implementation of effective urban policies and 
planning strategies.

With the development of remote sensing and geo-spatial technology, 
remote sensing images have been widely used to develop indicators 
describing urban morphology for UHI study [10–14]. A series of mor-
phological indicators are calculated from remote sensing images, such 
as land cover [15,16], landscape patterns [17,18], and built environ-
ment [19,20], to construct analysis and prediction models with the 
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data mining, AI training, and similar technologies. 
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retrieved land surface temperature (LST). Despite providing a 2D per-
spective of urban morphology, remote sensing images have limitations 
in capturing the spatial heterogeneity of 3D urban structures.

Currently, most cities tend to grow vertically during expansion. 
Understanding the vertical spatial characteristics of cities is beneficial 
for analyzing the thermal effects of complex built environments. 3D 
morphology reflects the absorption of thermal energy and its impact 
on microclimates [21]. With the open availability of various spatial 
observations and geospatial big data, an increasing number of 3D 
indicators have been developed as new sources for extracting the 3D 
built environment [22]. Sky view factor (SVF) [23,24] and green view 
factor (GVF) [25] from street view images are considered for UHI anal-
ysis. More crowdsourced geoinformation data are used to generate the 
height, volume, and density of buildings, providing insights into cities 
from a volumetric spatial scale [26,27]. Some studies have extracted 
urban morphology from both 2D and 3D perspectives to illustrate the 
relationship between urban morphology and LST [4,28,29]. Despite 
significant progress in 3D urban morphology, there has been less effort 
in fine-scale local studies and spatial scale accuracy. A fine-grained 
understanding of urban buildings and landscape patterns is able to 
still strengthen the understanding and analysis of urban heat islands. 
Meanwhile, the impact of 3D morphology has varying impact effects on 
specific cities, the evaluation with more detailed 3D information need 
to be explored.

Furthermore, urban systems exhibit considerable complexity, ne-
cessitating effective models to accurately measure the relationships 
between various morphological factors and UHI effects. Spatial regres-
sion [30] and geographically weighted regression (GWR) [4] have been 
employed to address the spatial heterogeneity among factors influenc-
ing UHI. However, these models face limitations due to their inability 
to manage multicollinearity, which impedes the determination of cor-
relations and interactions between factors. To address these challenges, 
machine learning approaches, such as boosted regression trees [31,32], 
random forest [33], and XGBoost [29], have been utilized to assess the 
significance of morphological indicators for UHI. Nonetheless, the black 
box nature of these machine learning methods often hampers their 
interpretability, thereby complicating the elucidation of morphological 
contributions to UHI. Recently, Shapley Additive exPlanations (SHAP) 
method has attracted widespread attention as an explainable method 
for machine learning. Inspired by this, we are keen to use the SHAP 
method to explore the UHI effects of urban morphology.

To this end, we propose a new framework to reveal the divergent 
mechanisms behind UHI from an urban 3D perspective by incorporating 
multi-modal geospatial data. Firstly, we utilize our previous works to 
extract urban entities from point clouds and building footprint from 
remote sensing images. Moreover, we use geo-tagged data to obtain 
vector polygons for calibration. Secondly, the extracted urban entities 
are employed to estimate the urban 2D & 3D morphology indicators 
within spatial grids. Finally, we use LightGBM model and SHAP method 
to assess the impact of these indicators and explain their contributions 
to UHI. Taking central area in Austin, Texas as the study case, the con-
tributions of primary urban morphology indicators affecting UHI are 
extensively examined and assessed, to further highlight the distinguish 
the underlying mechanisms of UHI effects. The main contributions of 
our work are as follows:

• By integrating multi-modal gao-spatial data, we establish a multi-
dimensional measurement system of urban morphology;

• We provide fine-grained urban understanding from point clouds 
to create detailed urban spatial values;

• We explore how 2D & 3D urban morphology impact UHI effect 
from an urban spatial perspective;

• The results of our study shed light the underlying mechanisms of 
UHI effect and provide evidence and strategies for UHI mitigation.
2 
2. Study area and data

2.1. Study area

Austin (30◦17′N, 98◦11′W) is located in central Texas on the eastern 
edge of the American Southwest2 (Fig.  1). It is the capital of Texas 
and one of the four largest cities in Texas and the 11th largest city 
in the United States, with a population of over 1 million residents, 
covering approximately 790 km2.3 From 2020 to 2023, Austin’s urban 
population and metropolitan area have experienced sustained growth.

Austin is situated within a hilly terrain, with elevations ranging 
from 80 to 405 m. The Colorado River traverses the downtown area, 
contributing to the unique topographical features. The hilly topography 
creates microclimates within the city, affecting temperature distribu-
tion and heat retention. The Colorado River serves as a natural cooling 
mechanism, providing a comparative baseline for understanding the 
cooling effects of water bodies.

As the capital of Texas, government entities are concentrated in the 
downtown area, while high-tech companies and factories are dispersed 
around the city. This makes Austin’s architectural style a blend of 
metropolitan density and rural sprawl. The city is characterized by 
a mix of high-rise buildings and suburban neighborhoods, creating a 
diverse urban landscape. The city is dotted with significant vegetation 
areas, such as parks and green spaces, which help mitigate the surface 
temperature increases associated with urban expansion.

The interaction between the geographical features and the build-
ing environment offers insights into mitigating UHI effects through 
strategic urban planning. This unique blend of urban and natural 
features makes it an intriguing case study for examining the spatial 
heterogeneity of LST within 3D urban perspective. Austin has become 
an excellent location for studying 3D urban structure and urban thermal 
environments.

2.2. Data collection

The point clouds data is derived from geospatial data products 
provided by the Texas Geographic Information Office,4 as part of the 
Texas Strategic Mapping Program. LiDAR data acquisition is conducted 
between Jan. 26, 2021, and Mar. 7, 2021, using NAD83 and NAVD88 
as horizontal and vertical datum, respectively, with a point density of 
12 points per square meter. The data format adheres to LAS 1.4 Format 
6,5 encompassing Intensity, Return Number, Scanner Channel, Classifi-
cation, and various other attributes. The data is annotated following the 
ASPRS ALS classification standard, as detailed in Table  1. The second 
column lists the ASPRS classification categories, and fourth column 
reflects the actual classes. We manually adjusted the classification to 
account for features such as rail and road surface as impervious surfaces 
as well as extract man-made structures from class 0 in CloudCompare6 
software. Finally, we use distinct colors to label the corresponding 
categories for visualizing the results. The remote sensing imagery and 
geo-tagged data are sourced from Google Earth7 and OpenStreetMap.8

Land surface temperature (LST) data for the study area is obtained 
from the Sentinel-3 satellites, including data from both Sentinel-3 A 
and Sentinel-3B. With an orbital period of approximately one day, 
the combination of these two satellites provides high-frequency, in-
scope data concurrent with the point clouds acquisition period. The 
Sea and Land Surface Temperature Radiometer (SLSTR) onboard these 
satellites is equipped with multiple thermal infrared (TIR) channels 

2 https://www.austintexas.gov/resident/about-city-austin
3 https://demographics-austin.hub.arcgis.com/
4 https://geographic.texas.gov
5 https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
6 https://cloudcompare.org/
7 https://earth.google.com/web/
8 https://www.openstreetmap.org/
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Fig. 1. Location of study area and its land surface temperature pattern. Note that the outline of Austin represents the boundary of the point cloud collection area.
Fig. 2. Framework of investigating the impact of urban morphology on UHI using multi-modal geo-spatial data.
to measure the Earth’s surface temperature [34], while visible and 
near-infrared channels are used to assist in temperature calculations 
and to provide additional environmental information. The collected 
information undergoes radiative and atmospheric corrections to ensure 
high-quality temperature measurements. We filter the data covering 
the study area through the Copernicus Open Access Hub,9 focusing on 
the period from Jan. 26 to Mar. 4, and exclude any data with large 
areas of missing values. The final selection includes eight Level-2 data 
sheets, each with an approximate resolution of 1 km. The average LST 

9 https://www.copernicus.eu/
3 
for overlapping areas was calculated to produce the final land surface 
temperature.

3. Method

To reveal the impact mechanisms and effects of 3D urban mor-
phology on the UHI, we propose a new workflow as illustrated in 
Fig.  2. Firstly, the proposed deep learning-based semantic segmentation 
method is utilized to extract major urban entities from large-scale point 
clouds. Moreover, we integrate remote sensing imagery and geotagged 
data to jointly extract 2D and 3D urban morphological features. Sec-
ondly, multi-temporal LST data are employed to calculate the UHI 
index. Next, a LightGBM model is constructed with the UHI index as 

https://www.copernicus.eu/
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Fig. 3. Examples of point clouds with attributes and corresponding semantic segmentation.
Table 1
Point clouds annotation classification standards and adjustments in our method.
 Value Class Select Actual class Color 
 0 Created, Never Classified ✓ Impervious Surface  
 1 Unclassified – –  
 2 Ground ✓ Ground  
 3 Low Vegetation ✓ Vegetation  
 4 Medium Vegetation ✓ Vegetation  
 5 High Vegetation ✓ Tree  
 6 Building ✓ Building  
 7 Low Point (Noise) – –  
 9 Water ✓ Water  
 10 Rail ✓ Impervious Surface  
 11 Road Surface ✓ Impervious Surface  
 14 Culverts ✓ Impervious Surface  
 17 Bridge Decks ✓ Impervious Surface  
 18–255 ⋯ – –  

the dependent variable and various urban morphology indicators as 
independent variables. Finally, the SHAP method is used to interpret 
the contributions and significance of the these indicators, shedding 
light on their differences and correlations.

3.1. Urban heat island index

UHI effect refers to the extent to which temperatures in urban 
areas are higher than those in surrounding rural or natural areas [35]. 
UHI can be measured using LST data obtained from remote sensing 
products. The formula of UHI index [36] is as follows: 

𝑈𝐻𝐼 =
𝑇𝑖 − �̂�

𝜎
(1)

where 𝑇𝑖 and �̂�  represent the LST value of the current pixel and 
the mean temperature value of the study area, respectively. 𝜎 is the 
standard deviation of the study area. This approach helps to mitigate 
the impact of climatic conditions on the UHI, providing a more intuitive 
and standardized measurement of UHI intensity. The calculations are 
performed using the ArcMap Raster Calculator.10

3.2. 2D & 3D urban morphology indicators

We extract urban entities from remote sensing images, point clouds, 
and geotagged data to obtain 2D and 3D urban morphological indica-
tors. These indicators focus on four key aspects: building, vegetation, 

10 https://www.esri.com/zh-cn/arcgis/products/arcgisdesktop/resources
4 
water environment, and urban facilities (as shown in Table  2), with the 
aim of assessing their impact mechanisms on the UHI effect.

To more effectively extract urban 2D and 3D morphology, we em-
ploy multi-modal geospatial data to identify and analyze urban entities. 
On one hand, point clouds represent the 3D spatial morphology of 
the city, facilitating the extraction of semantic entities that provide 
insights into the structural characteristics and distribution of various 
urban features. On the other hand, geotagged data and remote sensing 
imagery together enhance the comprehension of 2D features and their 
spatial distribution, offering a more comprehensive and macro-level 
perspective on urban environments.

We utilize the proposed ASGFormer [37] to extract urban objects 
from large-scale urban point clouds. ASGFormer takes point clouds as 
input and performs semantic segmentation on the point clouds using a 
Graph Transformer network. Thus, the 3D spatial structure is obtained 
to characterize 3D features and spatial morphology among different 
urban semantic categories. Specifically, The input data consists of point 
cloud coordinates (𝑋𝑌𝑍) and intensity, which are voxelized using a 
voxel size of 0.5 m. In total, we obtain 1245 point cloud blocks, among 
which 245 are randomly selected for training to predict the remaining 
1000 unlabeled samples. During training, we use CrossEntropy loss 
with label smoothing, the AdamW optimizer, and a cosine learning 
rate decay. The initial learning rate is set to 0.01, and the batch size 
is 16. The model is trained on an NVIDIA A100 GPU, and the best-
performing model on the validation set is used for inference. Finally, 
semantic segmentation results are mapped back to the original point 
clouds for subsequent analysis of urban 3D morphological indicators.

The semantic segmentation examples are shown in Fig.  3. As a 
typical area of Austin, the region near the University of Texas features 
diverse building types and dense green coverage. We extract buildings, 
low / medium/high vegetation, impervious surfaces, and some water 
bodies in the city to calculate subsequent urban 3D morphology in-
dicators. Meanwhile, remote sensing imagery is leveraged to extract 
building footprints and road networks. The proposed method [14] is 
capable of adapting to roads and buildings of various sizes, shapes, 
and densities. Finally, urban entity vectors are derived from geotagged 
data, such as OSM. These methods information enable the estimation of 
more accurate, comprehensive, and multidimensional 2D and 3D urban 
morphology indicators.

Based on the point clouds data format, we divide the remote sensing 
images, vector maps, and point clouds into identical blocks. Each block 
is then further divided into a 25 × 25 grid, within which morphological 
indicators are calculated. First, ground points are interpolated into a 
DEM for each grid, and the height difference is calculated by subtract-
ing the DEM from the feature points. Next, polygons are extracted from 

https://www.esri.com/zh-cn/arcgis/products/arcgisdesktop/resources
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Table 2
2D and 3D urban morphology indicators in four key aspects, where 𝑏, 𝑔, 𝑡, 𝑤, 𝑖𝑠, 𝑟 denote the building, ground, tree, water, impervious surface, and road, respectively.
 Aspects Name Type Abbr. Description Calculation  
 

Building

Building Total Area 2D BTA Total area of building ∑𝑛
𝑖=1 𝐴

𝑖
𝑏  

 Average Building Height 3D ABH Average height of building 1
𝑛

∑𝑛
𝑖=1 𝐻

𝑖
𝑏  

 Average Building Volume 3D ABV Average volume of building 1
𝑛

∑𝑛
𝑖=1 𝑉

𝑖
𝑏  

 Building Ratio 3D BR Percentage building footprint points to all ground points 𝑁𝑢𝑚𝑏∕𝑁𝑢𝑚𝑔  
 Sky View Factor 3D SVF Percentage of sky space to total space 𝑉𝑠𝑘𝑦∕𝑉𝑡𝑜𝑡𝑎𝑙  
 Vegetation Average Tree Height 3D ATH Average height of tree 1

𝑛

∑𝑛
𝑖=1 𝐻

𝑖
𝑡  

 Water Water Area 3D WA Total area of water ∑𝑛
𝑖=1 𝐴

𝑖
𝑤  

 Facility Density of Road 2D DR Ratio of road length to area 𝐿𝑟∕𝐴𝑡𝑜𝑡𝑎𝑙  
 Impervious Surfaces Ratio 3D ISR Percentage impervious surface points to all ground points 𝑁𝑢𝑚𝑖𝑠∕𝑁𝑢𝑚𝑔 
the building footprints and road networks, and manually adjusted to 
align with vectors from OSM. Finally, the elevation and polygons are 
used to calculate the morphological indicators.

Previous studies [4,29,38,39] have shown that the UHI effect is 
significantly influenced by the 2D and 3D morphology of buildings. 
To provide a more comprehensive understanding, we incorporate a set 
of urban morphological indicators categorized into four key aspects: 
buildings, vegetation, water, and facilities. These indicators jointly 
describe both horizontal and vertical spatial features and facilitate an 
in-depth analysis of their relationship with the UHI effect from a 3D 
spatial perspective. Moreover, we utilize a large language model (LLM) 
for a preliminary interpretation of these indicators [40], which supports 
the subsequent quantitative analysis.

3.3. LightGBM regression model

LightGBM is a highly efficient algorithm based on Gradient Boosting 
Decision Trees (GBDT), specifically designed to handle high-
dimensional features and large-scale datasets [41,42]. It operates by 
iteratively building an ensemble of weak predictive models, such as 
decision trees, and combining their predictions to create a robust final 
model. Unlike traditional GBDT implementations, LightGBM uses a leaf-
wise growth strategy with depth constraints, the algorithm splits only 
the leaf node with the highest information gain at each iteration. This 
approach reduces the number of splits, optimizing both memory usage 
and computational efficiency. Additionally, it restricts the depth of 
decision trees to prevent overfitting. Consequently, LightGBM offers 
faster training speeds, lower memory consumption, higher accuracy, 
and improved scalability when working with large datasets [41].

In this study, LightGBM is executed with UHI as the dependent 
variable, and nine urban morphology as independent variables. Thus, 
morphological indicators are used as input features for the LightGBM 
model to predict UHI. The dataset from the study area is split into 
training and validation sets with a 7:3 ratio. The grid search is em-
ployed to optimize the model parameters. This modeling process is 
implemented using Python 3.7.1611 with the sklearn12 and lightgbm13 
libraries. Subsequently, the coefficient of determination (R2) and root 
mean square error (RMSE) are applied to measure the model accuracy.

3.4. SHAP method

To address the black box issue commonly associated with machine 
learning models, we employ the SHAP method [43] to interpret the 
prediction process of the LightGBM model [44]. SHAP is a local inter-
pretation method based on cooperative game theory’s Shapley values . 
It constructs an additive explanation model to quantify the contribution 

11 https://www.python.org/
12 https://scikit-learn.org/stable/index.html
13 https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
5 
of each feature to the model’s output for each individual sample. The 
formula for SHAP is as follows: 

𝑈𝐻𝐼 = 𝑈𝐻𝐼𝑏𝑎𝑠𝑒 +
𝑁
∑

𝑖=1
𝑠ℎ𝑎𝑝𝑖 (2)

where 𝑈𝐻𝐼𝑏𝑎𝑠𝑒 represents the baseline value, which is the mean UHI 
value across the study area. 𝑁 and 𝑠ℎ𝑎𝑝𝑖 denote the number of features 
and the contribution of feature 𝑖 of all sample points to the predicted 
UHI, respectively. The relative contribution weight 𝑊 (𝑖) of feature 𝑖 to 
UHI is calculated as follow: 

𝑊 (𝑖) =
|𝑠ℎ𝑎𝑝𝑖|

∑𝑁
𝑖=1 |𝑠ℎ𝑎𝑝𝑖|

(3)

where |𝑠ℎ𝑎𝑝𝑖| denotes the mean |SHAP| value for feature 𝑖.
In UHI research, urban morphological features do not function in 

isolation. The SHAP method also enables the calculation of SHAP_
interaction_values, which provide insights into the interaction effects 
between pairs of features. For any given feature, its SHAP value is the 
sum of its main effect and its interaction effects with all other features. 
A more detailed explanation can be found in [43].

4. Results

4.1. Spatial distribution of UHI and urban morphology indicators

Before conducting the LightGBM modeling, the selected nine 2D & 
3D urban morphology indicators and calculated UHI index are statisti-
cally evaluated in terms of distributions and intensity, as shown in Fig. 
4(a). Both ABV and ABH did not exhibit distribution characteristics, 
whereas BTA, BR, ISR, and DR display similar spatial distribution 
characteristics. Moreover, water bodies and vegetation also exhibit 
relatively distinct distribution patterns.

In the western part of the study area, building coverage is highly 
concentrated, as evidenced by the high BTA, BR, and DR. This is 
consistent with the population distribution in the Austin from U.S. 
Census.14 Since impervious surfaces are mainly concentrated in roads 
and urban facilities, their spatial distribution is similar to that of roads 
and buildings. BR and SVF exhibit an inverse relationship, meaning 
that in areas with high building density, urban morphology tends to be 
compact, thereby reducing the SVF. Due to the Colorado River running 
through Austin, the distribution of major water bodies aligns with the 
river basin, showing a normal distribution. Adequate water systems 
help mitigate the UHI effect, with features such as streams playing a 
cooling role, while plants growing along the banks provide shade and 
absorb moisture. Austin is a city with dense vegetation, and most areas 
have high vegetation coverage. The southwestern part of the study area 
is hilly, and the presence of a Wildflower Center contributes to the 
higher vegetation rate in this region.

The average temperature of Austin is around 20 ◦C, which matches 
the value we calculated. The calculated UHI values are shown in Fig. 

14 https://demographics-austin.hub.arcgis.com

https://www.python.org/
https://scikit-learn.org/stable/index.html
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://demographics-austin.hub.arcgis.com
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Fig. 4. The selected 2D & 3D urban morphology components and UHI index investigated in our study, where (a) denotes the distribution of urban morphology indicators, (b) 
represents the UHI values in the center of Austin, and (c) shows the UHI hot spots.
Fig. 5. SHAP summary plot of urban morphological features on LightGBM model output (a). UHI response to urban morphological features: Feature importance plot with bar 
colors representing Pearson correlation coefficients, the numbers on the right side of the bars represent the relative contribution weights of the corresponding features to UHI (b).
4(b). For a semi-arid region in the Austin, heat stress is a health issue 
that must be addressed. Our results shows that UHI effect has a high 
correlation with urban morphology. The spatial characteristics of the 
UHI are shown in Fig.  4(c). The northern and southern parts of the 
study area are high-value UHI clusters, while the central-eastern part 
is a low-value cluster. Areas with dense buildings and road networks 
exhibit significantly higher temperatures. On one hand, high urban den-
sity promotes more concentrated activities such as population, industry, 
and transportation, leading to an increase in total carbon emissions. 
On the other hand, the rapid development of Austin has resulted in 
significant traffic congestion, making transportation the second-largest 
source of carbon emissions in the city. Meanwhile, river basins and 
regions with high vegetation coverage play a clear cooling role. The 
evaporation of moisture and the healthy growth of vegetation have 
become the city’s natural air conditioning.

4.2. Response of UHI to urban morphological indicators

A LightGBM model is constructed to fit the UHI effect using urban 
morphological indicators (R2 = 0.62, RMSE = 0.45), and SHAP method 
is subsequently applied to interpret the internal processes of model. 
By aggregating SHAP values for each indicator and calculating Pearson 
correlation coefficients, we assess the relative importance and direction 
of influence of urban morphology on UHI. We find that 3D urban 
morphology factors play a more significant role in influencing UHI 
effect, with SVF, ISR, and ABV having the most substantial impact, 
6 
as shown in Fig.  5. Their relative contribution weights are 22.7%, 
18.2%, 14.2%, respectively. Specifically, SVF (r = 0.10) and ISR (r =
0.35) are positively correlated with UHI, while building volume (r =
−0.14) and building height (r = −0.37) show a negative correlation in 
Fig.  5. The feature importance analysis indicates that the 3D building 
metrics (ABH, ABV, BR, SVF) ranks among the top five in terms of their 
contribution.

The dependencies between each feature value and its corresponding 
SHAP value for all samples are plotted to explore how these features 
influence UHI, as shown in Fig.  6. The dashed lines differentiate the 
positive and negative effects of urban morphological features on UHI. 
Threshold effects are observed in the influence of these features on 
UHI. For instance, when the building volume is below approximately 
100,000, it has a positive effect on UHI, intensifying the heat island 
effect. However, when building volume exceeds threshold, its effect 
shifts to mitigating UHI. Similarly, the thresholds for SVF, ISR, and 
BR are identified at 0.7, 0.1, and 0.1, respectively. Beyond these 
thresholds, their influence transitions from mitigating to promoting 
UHI. The impact of road density exhibits an inverted U-shape, where 
both extremely high and low level of road density help alleviate UHI.

Besides the statistic and importance of urban morphology, it is 
imperative to investigate the spatial distribution of the positive and 
negative impact of different urban morphology indicators on the UHI 
effect. The spatial distribution of SHAP values provides localized in-
sights into the impact of urban morphological metrics on UHI, as shown 
in Fig.  7. The color gradient from red to blue represents the transition 
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Fig. 6. SHAP dependence plots for urban morphology features.
Fig. 7. Spatial distribution of SHAP values for urban morphology features.
from positive to negative impacts, where a larger extent of red indicates 
a stronger positive contribution to UHI, and vice versa. The spatial 
heterogeneity observed across the study area highlights the variability 
in these effects.

SVF exhibits significant spatial clustering and has the strongest 
influence among all metrics, with 45.1% of the area showing |SHAP| >
0.15. Notably, 9.4% of the area has SHAP values ranging from 0.3 
to 0.65, primarily concentrated in the southern part of the region, 
indicating that SVF strongly amplifies UHI intensity there. In contrast, 
ISR displays an opposite spatial pattern to SVF and also has a relatively 
7 
strong impact, with 39.7% of the area showing |SHAP| > 0.15. The im-
pact of DR on UHI is slightly more negative than positive. Specifically, 
49.6% of the area has SHAP values between 0 and 0.15, while 39.8% 
falls within the range of −0.15 < SHAP < 0, and 10.5% of the area has 
SHAP values below −0.15. The strongest negative effects are mainly 
concentrated in the southeastern part of the region, as well as in a small 
portion of the eastern area.

It demonstrate different spatial patterns can also be observed within 
the same category. Although SVF and ISR are widely used for mea-
suring the compactness of the city, it is hard to tell which is a better 
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Fig. 8. The summary of the interactions between a single feature and all other features except itself.
indicator. Thus, we need to combine these indicators to obtain a better 
understanding about how urban morphology affect the UHI.

4.3. Influence of feature interactions on UHI

SHAP interaction values provide insights into how interactions be-
tween urban morphological features impact UHI. Fig.  8 summarizes the 
interactions between each feature and all other features. It is found 
that the interactions between urban morphology features can either 
exacerbate or alleviate UHI, depending on the specific conditions. 
Positive and negative interaction effects of each feature can partially 
offset each other. From a global perspective, building volume tends to 
mitigate UHI when interacting with other features, while SVF and DR 
tend to intensify UHI through their interactions.

Examining the interactions between ABV, ABH, and other features, 
we observe that when the ABV is below 100,000, interactions with 
DR tend to exacerbate UHI. However, when the ABV exceeds 100,000, 
interactions with DR help mitigate UHI. Similarly, when ABV is low, 
low SVF and tall trees helps to mitigate UHI. In contrast, with higher 
building volume, dense vegetation can actually intensify UHI (Fig.  9(a-
c)). Additionally, higher BR, DR, and ISR signify a more developed 
urban environment. In such conditions, interactions with tall buildings 
can contribute to alleviating UHI (Fig.  9(d-f)).

5. Discussion

5.1. Impact of urban morphological features on UHI

This study utilizes the LightGBM-SHAP framework to examine the 
impact of urban morphological features on UHI effects. Our findings 
indicate that, among various urban morphological factors, 3D building 
metrics have a more significant impact on UHI compared to other 
factors. This conclusion aligns with prior research conducted in differ-
ent urban contexts [45]. Additionally, the analysis of the relationship 
between SHAP values and urban morphological features reveals both 
nonlinear and threshold effects of these features on UHI.

Our results build upon the previously established positive correla-
tion between SVF and UHI [23,46]. Specifically, we find that when SVF 
is below 0.7, it mitigates UHI by enhancing street ventilation [47]. 
However, when SVF exceeds this threshold, the increased openness 
leads to greater surface exposure to solar radiation, resulting in higher 
temperatures [48]. It is important to recognize that the impact of 
8 
SVF on UHI can vary significantly across different spatial scales. This 
variation may be influenced by factors such as the study area, block 
layout, and building density. For instance, [49] reported a negative 
correlation between LST and SVF at the block scale (i.e., irregular grid). 
These findings highlight the importance of considering scale effects in 
future research.

Similarly, the influence of ISR on UHI also exhibits a threshold 
effect. When ISR is below 0.1, the evaporation effect on urban surfaces 
significantly reduces surface temperatures. However, as ISR increases, 
the cooling effect of evaporation diminishes, and impervious surfaces 
begin to absorb and store more heat, thereby exacerbating UHI. This 
occurs because impervious surfaces alter the latent and sensible heat 
fluxes within the urban boundary layer and surface layer, with in-
creased impervious surfaces disrupting natural heat exchange [50,
51].

Building volume also exhibits a distinct threshold effect on UHI. 
When building volume is less than 100,000, UHI is intensified due 
to larger exposed areas and localized heat accumulation. However, 
once the building volume exceeds this threshold, the combined effects 
of shading from compact, tall buildings [31] and the canyon effect 
created by ventilation corridors [52] help to mitigate UHI. Additionally, 
road density follows an inverted ‘U’-shape in its impact. While higher 
density facilitates ventilation and heat exchange, thereby reducing 
UHI. Excessive road density leads to increased heat buildup between 
buildings and elevated traffic heat emissions, which in turn exacerbate 
UHI effects [53]. At the same time, in high-tech industrial areas, the 
increased construction of light rail has significantly reduced urban 
transportation carbon emissions, compared to automobile traffic.

5.2. Unraveling complex interactions of urban morphological features on 
UHI effects

Firstly, the intricate interplay between urban morphological fea-
tures and their impact on UHI effects is analyzed using SHAP interac-
tion values. When building volume is relatively low, its interaction with 
a dense road network exacerbates UHI, as the limited air circulation 
caused by dense roads can lead to heat accumulation. However, as 
building volume increases, the ventilation effect of the road network 
becomes more pronounced, helping to mitigate UHI. This phenomenon 
can be attributed to the urban canyon effect, where dense arrangement 
of buildings and roads may create effective ventilation corridors under 
certain conditions, thereby reducing local temperatures [54].
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Fig. 9. SHAP interaction plots for urban morphology features.
Secondly, the interaction between building volume and vegetation 
cover also shows significant effects. When building volume is small and 
SVF is low, dense tree coverage can effectively blocks solar radiation, 
thereby alleviating UHI effects [55]. Conversely, as building volume 
increases, reduced sky visibility can contribute to heat retention at the 
surface, exacerbating UHI [56].

Moreover, the interaction between building height and road density 
exhibits complex effects. Research indicates that increased building 
height reduces local heat accumulation by casting shadows and en-
hancing air circulation, especially in high-density areas where this 
cooling effect on UHI is more pronounced. Therefore, in regions with 
high building and road densities, tall buildings often help mitigate 
UHI. However, when road density becomes excessively high, heat from 
traffic emissions and road surfaces accumulates locally, counteracting 
the shading effect of buildings and leading to further intensification of 
UHI [54,57,58].

Finally, a high proportion of impervious surfaces, combined with 
a dense road network and tall buildings, can help mitigate UHI by 
enhancing wind circulation and reducing solar radiation exposure [59]. 
These complex interactions highlight the dynamic and multi-
dimensional nature of UHI mechanisms across various urban morphol-
ogy combinations. They emphasize the importance of considering the 
combined effects of urban morphology in city planning and design to 
more effectively address and mitigate UHI effect.

5.3. Limitations

There are still some limitations in this study. Firstly, we focus on 
cold months (Jan. to Mar.), hot and moderate months should be further 
investigated. A single-season temperature may lead to a biased analysis 
of the impact mechanism. In future work, we plan to incorporate multi-
seasonal land surface temperature data to investigate the temporal 
dynamics of UHI patterns across different climate regimes.

Secondly, the UHI effect at the block scale, combined with building 
functions, needs further exploration to provide insights into urban 
functional zones.

Next, proportions of different buildings, such as low-rise, mid-rise, 
and high-rise buildings, are worth further discussion. The different 
temperature effects in the vertical direction are meaningful for urban 
studies.

Finally, the distance or proximity of other infrastructures to each 
block could be regarded as a key variable, which can be worth further 
investigating to understand the cooling effects of infrastructures spilling 
over the block boundary.
9 
6. Conclusion

This paper integrates 2D & 3D urban morphology indicators and 
utilizes LightGBM-SHAP framework to investigate the impacts and 
driving mechanisms related to the UHI effect by using multi-modal 
geo-spatial data. Firstly, we employ deep learning based semantic 
segmentation methods to extract urban entities from LiDAR and remote 
sensing imagery, and also obtain vector polygons from geo-tagged data. 
Next, we estimate urban 2D & 3D morphological indicators and select 
nine variables from the candidate indicators for subsequent modeling 
based on their correlation coefficients. Lastly, LightGBM-SHAP method 
is used to analysis the impact of those indicators on UHI and explain 
their contributions. We provide precise spatial measurements, detailed 
and high-confidence urban morphology, along with a comprehensive 
analysis of impact mechanisms and driving factors.

Taking Austin, Texas as the study case, the main conclusions are as 
follows:

• Urban indicators have a significant impact on UHI effect. Urban 
morphology features such as SVF and ISR contribute to increasing 
UHI, while building volume and height help reduce it;

• Urban morphological features exhibit threshold or boundary ef-
fects on UHI, where their influence shifts between intensifying 
and mitigating UHI beyond certain critical points. For instance, 
building volume may initially exacerbate UHI, but once it exceeds 
a certain threshold, it begins to alleviate the heat island effect. 
Similarly, indicators like SVF and ISR also show threshold effects. 
Spatially, these effects vary across different regions, with densely 
built areas experiencing stronger UHI effects, while regions with 
more vegetation or water bodies show cooling effects, empha-
sizing the regional variability in how urban morphology impacts 
UHI;

• Interactions between urban morphological features can either 
intensify or mitigate UHI depending on their combinations. For 
example, the interaction between lower building volume and road 
density typically exacerbates UHI, while higher building volume 
tends to alleviate it. Additionally, interactions between building 
height and other features, such as higher ISR representing ad-
vanced urban development, can also help mitigate UHI in certain 
cases.

The above findings indicate that integrating urban morphology 
extracted from multi-modal geo-spatial data with the LightGBM-SHAP 
framework is an effective and practical workflow for assessing UHI 
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effects, providing valuable insights to inform decision-making in urban 
planning and facilitate sustainable urban development.

Despite the achievement in our study, there is still room to im-
prove the understanding of the relationship between other factors of 
urbanization and UHI, as well as in more rational spatial delineation. 
In the future, we will explore more comprehensive spatiotemporal 
variation indicators based on socio-economic metrics to better elucidate 
the underlying mechanisms of UHI.
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